WAP手机版 RSS订阅 加入收藏  设为首页
易玩棋牌
当前位置:首页 > 易玩棋牌

易玩棋牌:若DL没了独立同分布假设,样本不独立的机器学习方法综述

时间:2019/9/8 17:03:56  作者:  来源:  浏览:0  评论:0
内容摘要: 现有的机器学习任务默认训练数据遵循独立同分布 (idependently and identically distributed, IID),神经网络、深度学习等常见算法一般都将数据遵循 IID 的假设作为其推导的一部分。然而,在真实世界中样本数据相关性(inter-depen...
    现有的机器学习任务默认训练数据遵循独立同分布 (idependently and identically distributed, IID),神经网络、深度学习等常见算法一般都将数据遵循 IID 的假设作为其推导的一部分。

然而,在真实世界中样本数据相关性(inter-dependent)几乎无处不在,非同源数据/标签的分布也可能具有不同的概率分布,这些数据都遵循非独立、同分布(Non-IID)。

在一些场景中,直接应用已有机器学习算法基于 Non-IID 数据完成模型训练,由于算法本身的先进性训练结果仍然较好。但对于某些应用场景,基于现有的机器学习算法和框架,使用 Non-IID 数据训练会出现意想不到的负面效果,比如模型准确度低、模型无法收敛等。

相关评论

本类更新

本类推荐

本类排行

本站所有站内信息仅供娱乐参考,不作任何商业用途,不以营利为目的,专注分享快乐,欢迎收藏本站!
所有信息均来自:百度一下 (888棋牌)
沪icp备12036483号-1